48 research outputs found

    Influence of voluntary contractions on the basal sEMG activity of the pelvic floor muscles

    Full text link
    [EN] Chronic pelvic pain (CPP) is a complex clinical condition that affects many women, being sometimes misdiagnosed or mistreated,which can be treated with the infiltration of botulinum toxin (BoNTA). The pelvic floor musculature (PFM) condition from CPP patients can be assessed by means of surface electromyography (sEMG). The evaluation of the basal activity can help to detect a muscular dysfunction, therefore it is important to ensure that the PFM shows a minimum activation when its sEMG is being analysed. In this study, we recorded the sEMG of 25 women with CPP before and 8, 12 and 24 weeks after their treatment with BoNTA while they performed a protocol of 5 voluntary contractions. The root mean square (RMS) and sample entropy (SampEn) of basal segments pre- (B[PRE]), inter- (B[I]) and post- (B[POST]) contractions of the sEMG were computed and normalized according to the minimum (RMSnorm) and maximum (SampEnorm) of the recording. B(PRE) showed the lowest RMSnorm median both before and after the treatment with BoNTA, which proved that the activity of the PFM is minimum before the first contraction. As for SampEnnorm, although results were not so conclusive, they also indicated that B(PRE) should be taken as a reference to analyse the PFM function at its state of minimum activity. Future works aiming to characterize the effects of BoNTA in PFM by means of sEMG should consider basal segments before contractions to assess basal tone conditions.This study was funded by ISCIII, MCIU, VLC Campus in Convocatoria Ayudas: UPV-La Fe (INBIO): 2016 SPEHG (ID:C18), 2019 sEMG_BONTAv (ID:C06) and with funds from private contracts with Merz Pharma España S.L.Albaladejo-Belmonte, M.; Tarazona-Motes, M.; Nohales-Alfonso, FJ.; Alberola-Rubio, J.; Garcia-Casado, J. (2020). Influence of voluntary contractions on the basal sEMG activity of the pelvic floor muscles. Sociedad Española de Ingeniería Biomédica. 240-243. http://hdl.handle.net/10251/178256S24024

    Progression of Doppler changes in early-onset small for gestational age fetuses. How frequent are the different progression sequences?

    Get PDF
    OBJECTIVE: To evaluate the progression of Doppler abnormalities in early-onset fetal smallness (SGA). METHODS: A total of 948 Doppler examinations of the umbilical artery (UA), middle cerebral artery (MCA) and ductus venosus (DV), belonging to 405 early-onset SGA fetuses, were studied, evaluating the sequences of Doppler progression, the interval examination-labor at which Doppler became abnormal and the cumulative sum of Doppler anomalies in relation with labor proximity. RESULTS: The most frequent sequences were that in which only the UA pulsatility index (PI) became abnormal (42.1%) and that in which an abnormal UA PI appeared first, followed by an abnormal MCA PI (24.2%). In general, 71.3% of the fetuses followed the classical progression sequence UA→MCA→DV, mostly in the early stages of growth restriction (84.1%). In addition, the UA PI was the first parameter to be affected (9 weeks before delivery), followed by the MCA PI and the DV PIV (1 and 0 weeks). Finally, the UA PI began to sum anomalies 5 weeks before delivery, while the MCA and DV did it at 3 and 1 weeks before the pregnancy ended. CONCLUSIONS: In early-onset SGA fetuses, Doppler progression tends to follow a predictable order, with sequential changes in the umbilical, cerebral and DV impedances

    Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics

    Full text link
    Non-invasive recording of uterine myoelectric activity (electrohysterogram, EHG) could provide an alternative to monitoring uterine dynamics by systems based on tocodynamometer (TOCO). Laplacian recording of bioelectric signals has been shown to give better spatial resolution and less interference than mono and bipolar surface recordings. The aim of this work was to study the signal quality obtaines from monopolar, bipolar and Laplacian techniques in EHG recordings, as well as to assess their ability to detect uterine contractions. Twenty-two recording sessions were carried out on singleton pregnant women during the active phase of labour. In each session the following simultaneous recordings were obtained: internal uterine pressure (IUP), external tension of abdominal wall (TOCO) and EHG signals (5 monopolar and 4 bipolar recordings, 1 discrete aproximation to the Laplacian of the potential and 2 estimates of the Laplacian from two active annular electrodes). The results obtained show that EHG is able to detect a higher number of uterine contractions than TOCO. Laplacian recordings give improved signal quality over monopolar and bipolar techniques, reduce maternal cardiac interference and improve the signal-to-noise ratio. The optimal position for recording EHG was found to be the uterine median axis and the lower centre-right umbilical zone.Research partly supported by the Spanish Ministerio de Ciencia y Tecnologia (TEC2010-16945) and the Universitat Politecnica de Valencia (PAID 2009/10-2298). The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.Alberola Rubio, J.; Prats Boluda, G.; Ye Lin, Y.; Valero, J.; Perales Marin, AJ.; Garcia Casado, FJ. (2013). Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics. Medical Engineering and Physics. 35(12):1736-1743. https://doi.org/10.1016/j.medengphy.2013.07.008S17361743351

    Treatment of Dyspareunia with Botulinum Neurotoxin Type A: Clinical Improvement and Influence of Patients' Characteristics

    Full text link
    [EN] The treatment of chronic pelvic pain (CPP) with botulinum neurotoxin type A (BoNT/A) has increased lately, but more studies assessing its effect are needed. This study aimed to evaluate the evolution of patients after BoNT/A infiltration and identify potential responders to treatment. Twenty-four women with CPP associated with dyspareunia were treated with 90 units of BoNT/A injected into their pelvic floor muscle (PFM). Clinical status and PFM activity were monitored in a previous visit (PV) and 12 and 24 weeks after the infiltration (W12, W24) by validated clinical questionnaires and surface electromyography (sEMG). The influence of patients' characteristics on the reduction in pain at W12 and W24 was also assessed. After treatment, pain scores and the impact of symptoms on quality of life dropped significantly, sexual function improved and sEMG signal amplitude decreased on both sides of the PFM with no adverse events. Headaches and bilateral pelvic pain were risk factors for a smaller pain improvement at W24, while lower back pain was a protective factor. Apart from reporting a significant clinical improvement of patients with CPP associated with dyspareunia after BoNT/A infiltration, this study shows that clinical characteristics should be analyzed in detail to identify potential responders to treatment.This study was funded by Universitat Politecnica de Valencia in Programa de Ayudas de Investigacion y Desarrollo (PAID-01-20), ISCIII, MCIU, VLC Campus in Convocatoria Ayudas: UPV-La Fe (INBIO): 2016 SPEHG (ID:C18), 2019 sEMG_BONTAv (ID:C06) and funds from private contracts with Merz Pharmaceuticals GmbH S.L.Tarazona-Motes, M.; Albaladejo-Belmonte, M.; Nohales-Alfonso, FJ.; De-Arriba, M.; Garcia-Casado, J.; Alberola-Rubio, J. (2021). Treatment of Dyspareunia with Botulinum Neurotoxin Type A: Clinical Improvement and Influence of Patients' Characteristics. International Journal of Environmental research and Public Health. 18(16):1-12. https://doi.org/10.3390/ijerph18168783S112181

    Characterization of Pelvic Floor Activity in Healthy Subjects and with Chronic Pelvic Pain: Diagnostic Potential of Surface Electromyography

    Full text link
    [EN] Chronic pelvic pain (CPP) is a highly disabling disorder in women usually associated with hypertonic dysfunction of the pelvic floor musculature (PFM). The literature on the subject is not conclusive about the diagnostic potential of surface electromyography (sEMG), which could be due to poor signal characterization. In this study, we characterized the PFM activity of three groups of 24 subjects each: CPP patients with deep dyspareunia associated with a myofascial syndrome (CPP group), healthy women over 35 and/or parous (>35/P group, i.e., CPP counterparts) and under 35 and nulliparous (RMS), a predominance of low-frequency components (DI), greater complexity (>SampEn) and lower synchronization on the same side (35/P group. The same trend in differences was found between healthy women (35/P) associated with aging and parity. These results show that sEMG can reveal alterations in PFM electrophysiology and provide clinicians with objective information for CPP diagnosis.This study was funded by Universitat Politecnica de Valencia in Programa de Ayudas de Investigacion y Desarrollo (PAID-01-20), ISCIII, MCIU, VLC Campus in Convocatoria Ayudas: UPV-La Fe (INBIO): 2016 SPEHG (ID:C18), 2019 sEMG_BONTAv (ID:C06) and funds from private contracts with Merz Pharmaceuticals GmbH S.Albaladejo-Belmonte, M.; Tarazona-Motes, M.; Nohales-Alfonso, FJ.; De-Arriba, M.; Alberola-Rubio, J.; Garcia-Casado, J. (2021). Characterization of Pelvic Floor Activity in Healthy Subjects and with Chronic Pelvic Pain: Diagnostic Potential of Surface Electromyography. Sensors. 21(6):1-17. https://doi.org/10.3390/s21062225S11721

    Prediction of labor onset type: Spontaneous vs induced; role of electrohysterography?

    Full text link
    Background and objective Induction of labor (IOL) is a medical procedure used to initiate uterine contractions to achieve delivery. IOL entails medical risks and has a significant impact on both the mother's and newborn's well-being. The assistance provided by an automatic system to help distinguish patients that will achieve labor spontaneously from those that will need late-term IOL would help clinicians and mothers to take an informed decision about prolonging pregnancy. With this aim, we developed and evaluated predictive models using not only traditional obstetrical data but also electrophysiological parameters derived from the electrohysterogram (EHG). Methods EHG recordings were made on singleton term pregnancies. A set of 10 temporal and spectral parameters was calculated to characterize EHG bursts and a further set of 6 common obstetrical parameters was also considered in the predictive models design. Different models were implemented based on single layer Support Vector Machines (SVM) and with aggregation of majority voting of SVM (double layer), to distinguish between the two groups: term spontaneous labor (≤41 weeks of gestation) and IOL late-term labor. The areas under the curve (AUC) of the models were compared. Results The obstetrical and EHG parameters of the two groups did not show statistically significant differences. The best results of non-contextualized single input parameter SVM models were achieved by the Bishop Score (AUC = 0.65) and GA at recording time (AUC = 0.68) obstetrical parameters. The EHG parameter median frequency, when contextualized with the two obstetrical parameters improved these results, reaching AUC = 0.76. Multiple input SVM obtained AUC = 0.70 for all EHG parameters. Aggregation of majority voting of SVM models using contextualized EHG parameters achieved the best result AUC = 0.93. Conclusions Measuring the electrophysiological uterine condition by means of electrohysterographic recordings yielded a promising clinical decision support system for distinguishing patients that will spontaneously achieve active labor before the end of full term from those who will require late term IOL. The importance of considering these EHG measurements in the patient's individual context was also shown by combining EHG parameters with obstetrical parameters. Clinicians considering elective labor induction would benefit from this technique.General Electric HealthcareAlberola Rubio, J.; Garcia Casado, FJ.; Prats-Boluda, G.; Ye Lin, Y.; Desantes, D.; Valero, J.; Perales Marin, AJ. (2017). Prediction of labor onset type: Spontaneous vs induced; role of electrohysterography?. Computer Methods and Programs in Biomedicine. 144:127-133. https://doi.org/10.1016/j.cmpb.2017.03.018S12713314

    Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy

    Full text link
    [EN] Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy and entails high costs for health systems. Currently, no reliable labor proximity prediction techniques are available for clinical use. Regular checks by uterine electrohysterogram (EHG) for predicting preterm labor have been widely studied. The aim of the present study was to assess the feasibility of predicting labor with a 7- and 14-day time horizon in TPL women, who may be under tocolytic treatment, using EHG and/or obstetric data. Based on 140 EHG recordings, artificial neural networks were used to develop prediction models. Non-linear EHG parameters were found to be more reliable than linear for differentiating labor in under and over 7/14 days. Using EHG and obstetric data, the <7- and <14-day labor prediction models achieved an AUC in the test group of 87.1 +/- 4.3% and 76.2 +/- 5.8%, respectively. These results suggest that EHG can be reliable for predicting imminent labor in TPL women, regardless of the tocolytic therapy stage. This paves the way for the development of diagnostic tools to help obstetricians make better decisions on treatments, hospital stays and admitting TPL women, and can therefore reduce costs and improve maternal and fetal wellbeing.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and by the Generalitat Valenciana (AICO/2019/220).Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.... (2020). Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy. Sensors. 20(9):1-16. https://doi.org/10.3390/s20092681S116209Beck, S., Wojdyla, D., Say, L., Pilar Bertran, A., Meraldi, M., Harris Requejo, J., … Van Look, P. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization, 88(1), 31-38. doi:10.2471/blt.08.062554Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4Petrou, S. (2005). The economic consequences of preterm birth duringthe first 10 years of life. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 10-15. doi:10.1111/j.1471-0528.2005.00577.xLucovnik, M., Chambliss, L. R., & Garfield, R. E. (2013). Costs of unnecessary admissions and treatments for «threatened preterm labor». American Journal of Obstetrics and Gynecology, 209(3), 217.e1-217.e3. doi:10.1016/j.ajog.2013.06.046Haas, D., Benjamin, T., Sawyer, R., & Quinney, S. (2014). Short-term tocolytics for preterm delivery &ndash; current perspectives. International Journal of Women’s Health, 343. doi:10.2147/ijwh.s44048Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-sChkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-yHoroba, K., Jezewski, J., Matonia, A., Wrobel, J., Czabanski, R., & Jezewski, M. (2016). Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybernetics and Biomedical Engineering, 36(4), 574-583. doi:10.1016/j.bbe.2016.06.004Vinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1Vrhovec, J., Macek-Lebar, A., & Rudel, D. (s. f.). Evaluating Uterine Electrohysterogram with Entropy. IFMBE Proceedings, 144-147. doi:10.1007/978-3-540-73044-6_36Diab, A., Hassan, M., Marque, C., & Karlsson, B. (2014). Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Medical Engineering & Physics, 36(6), 761-767. doi:10.1016/j.medengphy.2014.01.009Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42-49. doi:10.1016/j.neucom.2015.01.107Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE, 8(10), e77154. doi:10.1371/journal.pone.0077154Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116Degbedzui, D. K., & Yüksel, M. E. (2020). Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals. Computers in Biology and Medicine, 119, 103677. doi:10.1016/j.compbiomed.2020.103677Borowska, M., Brzozowska, E., Kuć, P., Oczeretko, E., Mosdorf, R., & Laudański, P. (2018). Identification of preterm birth based on RQA analysis of electrohysterograms. Computer Methods and Programs in Biomedicine, 153, 227-236. doi:10.1016/j.cmpb.2017.10.018Vinken, M. P. G. C., Rabotti, C., Mischi, M., van Laar, J. O. E. H., & Oei, S. G. (2010). Nifedipine-Induced Changes in the Electrohysterogram of Preterm Contractions: Feasibility in Clinical Practice. Obstetrics and Gynecology International, 2010, 1-8. doi:10.1155/2010/325635Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-yBradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi:10.1016/s0031-3203(96)00142-2Alexandersson, A., Steingrimsdottir, T., Terrien, J., Marque, C., & Karlsson, B. (2015). The Icelandic 16-electrode electrohysterogram database. Scientific Data, 2(1). doi:10.1038/sdata.2015.17Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8Mas-Cabo, J., Prats-Boluda, G., Garcia-Casado, J., Alberola-Rubio, J., Perales, A., & Ye-Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/5373810Terrien, J., Marque, C., & Karlsson, B. (2007). Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2007.4352680Rooijakkers, M. J., Rabotti, C., Oei, S. G., Aarts, R. M., & Mischi, M. (2014). Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings. Physiological Measurement, 35(7), 1215-1228. doi:10.1088/0967-3334/35/7/1215Ahmed, M., Chanwimalueang, T., Thayyil, S., & Mandic, D. (2016). A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy, 19(1), 2. doi:10.3390/e19010002Karmakar, C. K., Khandoker, A. H., Gubbi, J., & Palaniswami, M. (2009). Complex Correlation Measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(1), 17. doi:10.1186/1475-925x-8-17Roy, B., & Ghatak, S. (2013). Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arquivos Brasileiros de Cardiologia. doi:10.5935/abc.20130181Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341Kl. Comparison between Using Linear and Non-linear Features to Classify Uterine Electromyography Signals of Term and Preterm Deliveries. (2013). 2013 30th National Radio Science Conference (NRSC). doi:10.1109/nrsc.2013.6587953Aditya, S., & Tibarewala, D. N. (2012). Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. International Journal of Artificial Intelligence and Soft Computing, 3(2), 143. doi:10.1504/ijaisc.2012.049010Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 155014771773339. doi:10.1177/1550147717733391Murthy, H. S. N., & Meenakshi, D. M. (2015). ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia- A Comparison. Bonfring International Journal of Research in Communication Engineering, 5(2), 07-11. doi:10.9756/bijrce.8030Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. doi:10.1016/j.knosys.2011.07.016Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: International Journal of Forecasting, 14(1), 35-62. doi:10.1016/s0169-2070(97)00044-7Lawrence, S., & Giles, C. L. (2000). Overfitting and neural networks: conjugate gradient and backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. doi:10.1109/ijcnn.2000.857823Diab, A., Hassan, M., Boudaoud, S., Marque, C., & Karlsson, B. (2013). Nonlinear estimation of coupling and directionality between signals: Application to uterine EMG propagation. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610513Most, O., Langer, O., Kerner, R., Ben David, G., & Calderon, I. (2008). Can myometrial electrical activity identify patients in preterm labor? American Journal of Obstetrics and Gynecology, 199(4), 378.e1-378.e6. doi:10.1016/j.ajog.2008.08.003Mas-Cabo, J., Prats-Boluda, G., Ye-Lin, Y., Alberola-Rubio, J., Perales, A., & Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control, 52, 198-205. doi:10.1016/j.bspc.2019.04.001You, J., Kim, Y., Seok, W., Lee, S., Sim, D., Park, K. S., & Park, C. (2019). Multivariate Time–Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Labor. Journal of Electrical Engineering & Technology, 14(2), 897-916. doi:10.1007/s42835-019-00118-9Schuit, E., Scheepers, H., Bloemenkamp, K., Bolte, A., Duvekot, H., … van Eyck, J. (2015). Predictive Factors for Delivery within 7 Days after Successful 48-Hour Treatment of Threatened Preterm Labor. American Journal of Perinatology Reports, 05(02), e141-e149. doi:10.1055/s-0035-1552930Liao, J. B., Buhimschi, C. S., & Norwitz, E. R. (2005). Normal Labor: Mechanism and Duration. Obstetrics and Gynecology Clinics of North America, 32(2), 145-164. doi:10.1016/j.ogc.2005.01.001Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Alberola-Rubio, J., & Perales, A. (2014). Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Computational and Mathematical Methods in Medicine, 2014, 1-11. doi:10.1155/2014/47078

    Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor

    Full text link
    [EN] Although research studies using electrohysterography on women without tocolytic therapy have shown its potential for preterm birth diagnosis, tocolytics are usually administered in emergency rooms at the first sign of threatened preterm labor (TPL). Information on the uterine response during tocolytic treatment could prove useful for the development of tools able to predict true preterm deliveries under normal clinical conditions. The aim of this study was thus to analyze the effects of Atosiban on Electrohysterogram (EHG) parameters and to compare its effects on women who delivered preterm (WDP) and at term (WDT). Electrohysterograms recorded in different Atosiban therapy stages (before, during and after drug administration) on 40 WDT and 27 WDP were analyzed by computing linear, and non-linear EHG parameters. Results reveal that Atosiban does not greatly affect the EHG signal amplitude, but does modify its spectral content and reduces the energy associated with the fast wave high component in both WDP and WDT, with a faster response in the latter. EHG signal complexity remained constant in WDT, while it increased in WDP until it reached similar values to WDT during Atosiban treatment. The spectral and complexity parameters were able to separate (p < 0.05) WDT and WDP prior to and during tocolytic treatment and before and after treatment, respectively. The results pave the way for developing better and more reliable medical decision support systems based on EHG for preterm delivery prediction in TPL women in clinical scenarios.This work received financial support from the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (DPI2015-68397-R), VLC/Campus (UPV-FE-2018-B03) and by Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana (GV/2018/104).Mas-Cabo, J.; Prats-Boluda, G.; Ye Lin, Y.; Alberola Rubio, J.; Perales, A.; Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control. 52:198-205. https://doi.org/10.1016/j.bspc.2019.04.001S1982055

    Comparison of labour induction with misoprostol and dinoprostone and characterization of uterine response based on electrohysterogram

    Full text link
    [EN] Objective: The objective of this study is to compare the uterine activity response between women administered dinoprostone (prostaglandin E2) and misoprostol (prostaglandin E1) for induction of labour (IOL) by analysing not only the traditional obstetric data but also the parameters extracted from uterine electrohysterogram (EHG). Methods: Two cohorts were defined: misoprostol (25-mg vaginal tablets; 251 women) and dinoprostone cohort (10 mg vaginal inserts; 249 women). All the mothers were induced by a medical indication of a Bishop Score < ¿ 6. Results: The misoprostol cohort was associated with a shorter time to achieve active labour (p ¿ .017) and vaginal delivery (p ¿ .009) and with a higher percentage of vaginal delivery in less than 24 h in mothers with a very unfavourable cervix score (risk ratio (RR): 1.41, IC95% 1.17¿1.69, p ¿ .002). Successful inductions with misoprostol showed EHG parameter values significantly higher than basal state for amplitude and pseudo Montevideo units (PMU) 60¿ after drug administration, while spectral parameters significantly increased after 150¿. This response was not observed in failed inductions. In the successful dinoprostone group, the duration and number of contractions increased significantly after 120¿, PMU did so after 180¿, and no significant differences were found for spectral parameters, possibly due to the slower pharmacokinetics of this drug. Conclusion: Successful inductions of labour by misoprostol are associated with earlier effective contractions than in labours induced by dinoprostone.This work was partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under grant [DPI2015-68397-R] and by the company Bial SA.Benalcazar-Parra, C.; Monfort-Orti, R.; Ye Lin, Y.; Prats-Boluda, G.; Alberola Rubio, J.; Perales Marín, AJ.; Garcia-Casado, J. (2019). Comparison of labour induction with misoprostol and dinoprostone and characterization of uterine response based on electrohysterogram. The Journal of Maternal-Fetal & Neonatal Medicine. 32(10):1586-1594. https://doi.org/10.1080/14767058.2017.1410791S15861594321

    Feasibility and analysis of bipolar concentric recording of Electrohysterogram with flexible active electrode

    Full text link
    The conduction velocity and propagation patterns of Electrohysterogram (EHG) provide fundamental information about uterine electrophysiological condition. The accuracy of these measurements can be impaired by both the poor spatial selectivity and sensitivity to the relative direction of the contraction propagation associated with conventional disc electrodes. Concentric ring electrodes could overcome these limitations the aim of this study was to examine the feasibility of picking up surface EHG signals using a new flexible tripolar concentric ring electrode (TCRE), and to compare it with conventional bipolar recordings. Simultaneous recording of conventional bipolar signals and bipolar concentric EHG (BC-EHG) were carried out on 22 pregnant women. Signal bursts were characterized and compared. No significant differences among channels in either duration or dominant frequency in the Fast Wave High frequency range were found. Nonetheless, the high pass filtering effect of the BC-EHG records resulted in lower frequency content within the range 0.1 to 0.2 Hz than the bipolar ones. Although the BC-EHG signal amplitude was about 5-7 times smaller than that of bipolar recordings, similar signal-to-noise ratio was obtained. These results suggest that the flexible TCRE is able to pick up uterine electrical activity and could provide additional information for deducing uterine electrophysiological condition.The authors are grateful to the Obstetrics Unit of the Hospital Universitario La Fe de Valencia (Valencia, Spain), where the recording sessions were carried out. The work was supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC2010-16945), by the Universitat Politecnica de Valencia (PAID SP20120490) and Generalitat Valenciana (GV/2014/029) and by General Electric Healthcare.Ye Lin, Y.; Alberola Rubio, J.; Prats Boluda, G.; Perales Marin, AJ.; Desantes, D.; Garcia Casado, FJ. (2015). Feasibility and analysis of bipolar concentric recording of Electrohysterogram with flexible active electrode. Annals of Biomedical Engineering. 43(4):968-976. https://doi.org/10.1007/s10439-014-1130-5S968976434Alberola-Rubio, J., G. Prats-Boluda, Y. Ye-Lin, J. Valero, A. Perales, and J. Garcia-Casado. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics. Med. Eng. Phys. 35(12):1736–1743, 2013.Besio, W. G., K. Koka, R. Aakula, and W. Dai. Tri-polar concentric ring electrode development for laplacian electroencephalography. IEEE Trans. Biomed. Eng. 53(5):926–933, 2006.Devasahayam, S. R. Signals and Systems in Biomedical Engineering. Berlin: Springer, 2013.Devedeux, D., C. Marque, S. Mansour, G. Germain, and J. Duchene. Uterine electromyography: a critical review. Am. J. Obstet. Gynecol. 169(6):1636–1653, 1993.Estrada, L., A. Torres, J. Garcia-Casado, G. Prats-Boluda, and R. Jane. Characterization of laplacian surface electromyographic signals during isometric contraction in biceps brachii. Conf. Proc. IEEE Eng Med. Biol. Soc. 2013:535–538, 2013.Euliano, T. Y., D. Marossero, M. T. Nguyen, N. R. Euliano, J. Principe, and R. K. Edwards. Spatiotemporal electrohysterography patterns in normal and arrested labor. Am. J. Obstet. Gynecol. 200(1):54–57, 2009.Farina, D., and C. Cescon. Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Trans. Biomed. Eng. 48(11):1326–1334, 2001.Fele-Zorz, G., G. Kavsek, Z. Novak-Antolic, and F. Jager. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med. Biol. Eng Comput. 46(9):911–922, 2008.Garfield, R. E., and W. L. Maner. Physiology and electrical activity of uterine contractions. Semin. Cell Dev. Biol. 18(3):289–295, 2007.Garfield, R. E., W. L. Maner, L. B. Mackay, D. Schlembach, and G. R. Saade. Comparing uterine electromyography activity of antepartum patients vs. term labor patients. Am. J. Obstet. Gynecol. 193(1):23–29, 2005.Garfield, R. E., H. Maul, L. Shi, W. Maner, C. Fittkow, G. Olsen, and G. R. Saade. Methods and devices for the management of term and preterm labor. Ann. N. Y. Acad. Sci. 943(1):203–224, 2001.Hassan, M., J. Terrien, C. Muszynski, A. Alexandersson, C. Marque, and B. Karlsson. Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans. Biomed. Eng. 60(4):1160–1166, 2013.Kaufer, M., L. Rasquinha, and P. Tarjan. Optimization of multi-ring sensing electrode set, Conference proceedings of IEEE Engineering in Medicine and Biology Society, 1990, pp. 612–613.Koka, K., and W. G. Besio. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. J. Neurosci. Methods 165(2):216–222, 2007.Lu, C.-C., and P. P. Tarjan. Pasteless, active, concentric ring sensors for directly obtained laplacian cardiac electrograms. J. Med. Biol. Eng. 22(4):199–203, 2002.Lucovnik, M., W. L. Maner, L. R. Chambliss, R. Blumrick, J. Balducci, Z. Novak-Antolic, and R. E. Garfield. Noninvasive uterine electromyography for prediction of preterm delivery. Am. J. Obstet. Gynecol. 204(3):228.e1–228.e10, 2011.Maner, W. L., and R. E. Garfield. Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann. Biomed. Eng. 35(3):465–473, 2007.Maner, W. L., R. E. Garfield, H. Maul, G. Olson, and G. Saade. Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet. Gynecol. 101(6):1254–1260, 2003.Marque, C., J. M. Duchene, S. Leclercq, G. S. Panczer, and J. Chaumont. Uterine EHG processing for obstetrical monitoring. IEEE Trans. Biomed. Eng. 33(12):1182–1187, 1986.Marque, C. K., J. Terrien, S. Rihana, and G. Germain. Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC. Pregnancy Childbirth. 7(Suppl1):S5, 2007.Maul, H., W. L. Maner, G. Olson, G. R. Saade, and R. E. Garfield. Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J. Matern. Fetal Neonatal Med. 15(5):297–301, 2004.Miles, A. M., M. Monga, and K. S. Richeson. Correlation of external and internal monitoring of uterine activity in a cohort of term patients. Am. J. Perinatol. 18(3):137–140, 2001.Prats-Boluda, G., J. Garcia-Casado, J. L. Martinez-de-Juan, and Y. Ye-Lin. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med. Eng. Phys. 33(4):446–455, 2010.Prats-Boluda, G., Y. Ye-Lin, E. Garcia-Breijo, J. Ibañez, and J. Garcia-Casado. Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Meas. Sci. Technol. 23(12):1–10, 2012.Rabotti, C., M. Mischi, S. G. Oei, and J. W. Bergmans. Noninvasive estimation of the electrohysterographic action-potential conduction velocity. IEEE Trans. Biomed. Eng. 57(9):2178–2187, 2010.Rabotti, C., S. G. Oei, H. J. van ‘t, and M. Mischi. Electrohysterographic propagation velocity for preterm delivery prediction. Am. J. Obstet. Gynecol. 205(6):e9–e10, 2011.Rooijakkers, M. J., S. Song, C. Rabotti, S. G. Oei, J. W. Bergmans, E. Cantatore, and M. Mischi. Influence of electrode placement on signal quality for ambulatory pregnancy monitoring. Comput. Math. Methods Med. 2014(1):960980, 2014.Schlembach, D., W. L. Maner, R. E. Garfield, and H. Maul. Monitoring the progress of pregnancy and labor using electromyography. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Suppl1):S33–S39, 2009.Sikora, J., A. Matonia, R. Czabanski, K. Horoba, J. Jezewski, and T. Kupka. Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch. Perinatal Med. 17(2):97–103, 2011.Terrien, J., C. Marque, and B. Karlsson. Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram, Conference proceedings of IEEE Engineering in Medicine and Biology Society, 2007, pp. 1872–1875.Terrien, J., C. Marque, T. Steingrimsdottir, and B. Karlsson. Evaluation of adaptive filtering methods on a 16 electrode electrohysterogram recorded externally in labor, 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing, 2007, Vol. 16, pp. 135–138.U.S. Preventive Services Task Force. Guide to clinical preventive services: an assessment of the effectiveness of 169 interventions. Baltimore: Willams & Wilkins, 1989
    corecore